
Correspondence-based analogies
for choosing problem representations

Aaron Stockdill∗, Daniel Raggi∗, Mateja Jamnik∗,
Grecia Garcia Garcia†, Holly E. A. Sutherland†, Peter C.-H. Cheng† and Advait Sarkar‡

∗University of Cambridge, Cambridge, UK
{aaron.stockdill, daniel.raggi, mateja.jamnik}@cl.cam.ac.uk

†University of Sussex, Brighton, UK
{g.garcia-garcia, h.sutherland, p.c.h.cheng}@sussex.ac.uk

‡Microsoft Research, Cambridge, UK
advait@microsoft.com

Abstract—Mathematics and computing students learn new con-
cepts and fortify their expertise by solving problems. The repre-
sentation of a problem, be it through algebra, diagrams, or code,
is key to understanding and solving it. Multiple-representation
interactive environments are a promising approach, but the task
of choosing an appropriate representation is largely placed on the
user. We propose a new method to recommend representations
based on correspondences: conceptual links between domains.
Correspondences can be used to analyse, identify, and construct
analogies even when the analogical target is unknown. This
paper explains how correspondences build on probability theory
and Gentner’s structure-mapping framework; proposes rules for
semi-automated correspondence discovery; and describes how
correspondences can explain and construct analogies.

Index Terms—analogy, problem-solving, representation

I. INTRODUCTION

People adapt their explanation for their audience [1]. This
adaptation can be motivated by the concept being explained,
the audience’s knowledge, or the motivation behind sharing the
concept [2], [3]. Each factor must be balanced by the explainer
before choosing a representation for the explainee.

In this work, we suggest a paradigm for encoding the
analogical links between different representational systems as a
means of suggesting alternative representations, and thus easing
the burden on the explainer. We do this through a formalisation
of correspondence which: is probabilistic, allowing us to derive
links between representational systems from examples; has
mathematical properties that enable composition and other
forms of analogical discovery; and allows us to compute a
measure of informational suitability of representational systems,
which can be used for representation selection.

Consider the problem of finding a formula for the sum of
integers between 1 and n, using some of the mathematical
operators +, −, × and ÷. We may start by writing the
expression in a ‘formal’ notation, that is,∑n

i=1
i (1)

which is compact and unambiguous. But it presupposes an
understanding of summation notation, and it gives no clues to

(a)

n+ 1

n

(b)

Fig. 1: The sum of integers in a dots representation. (a) The
numbers 1 through to 5 as rows of dots. (b) The general
relationship for n dots, extrapolated from n = 5; counting and
halving the grid, we have n× (n+ 1)÷ 2 black-edged dots.

the shape of our desired formula. The solution might involve
induction, or identifying and manipulating series; both are
advanced techniques to reach n× (n+ 1)÷ 2. The algebraic
representational system is informationally appropriate, but not
cognitively appropriate for, say, a novice.

We can re-represent Formula (1) as in Figure 1a, instantiated
to n = 5, where numbers are rows of dots. Modulo generali-
sation, these representations show the same key information,
but their cognitive features are different: the dot representation
hints at the solution, but in the algebraic representation this is
missing. Observing that we have a triangle, applying simple
counting and reflection rules yields the solution in Figure 1b.

Symbolic algebra and grids of dots are not equivalent repre-
sentational systems: the former can encode concepts that the
latter cannot. Nor are the two forms of the problem equivalent:
‘modulo generalisation’ exposes different levels of abstraction.
But the statements are analogous, capturing the same important
concepts [4]: integers, associativity, commutativity, etc.

Preserving the relevant structure across representations is
complicated when the components take different forms. The
symbol 2 becomes ◦◦, while + becomes the stacking operation.
The notion of correspondence that we present in this paper
precisely captures such links between the properties of different
representational systems, which can be used to explain existing
analogies, and to help construct novel analogies. Related work
on analogy and representation is summarised in Appendix A.

Our previous work on the rep2rep framework describes978-1-7281-6901-9/20/$31.00 ©2020 IEEE

representational systems in terms of properties, completely
describing a system, and a problem within that system [4]. We
described correspondences as links between representational
systems, which act as the basis of a representation recommen-
dation. Given problem q and representational system r, we
define the informational suitability of r for representing q as∑

〈p1,p2,s〉∈C

s · importanceq(p1) · satp1
(q) · satp2

(r) (2)

where C is the set of correspondences, s is the strength
of a correspondence, importanceq(p1) is the importance of
property formula p1 for problem q [4], and satp1

(q) is an
indicator function equal to 1 when property formula p1 is
satisfied by the properties of q, otherwise 0 (similarly for
p2 and r). We expand on each of these components in the
following section. Intuitively, Equation (2) counts reasons why
representational system r is good, weighting those reasons
by both how important they are to the problem q and how
‘good’ those reasons are (the correspondence strength s).
From informational suitability we can recommend effective
representational systems to solve a problem. In this paper, we
formalise correspondence in terms of conditional probabilities
and propositional logic. We show how this definition allows
us to automatically derive correspondences from data, and
subsequently, how given a set of correspondences we can
automatically infer novel ones.

II. FORMALISING CORRESPONDENCES

A. Transformations

A correspondence associates an encoding of informational
content in one representational system to an encoding of
content in another representational system, with a measure of
how similar the content is. When both source and target repre-
sentations are specified, the correspondences describe how they
are analogous; when only the source representation is specified,
the correspondences specify requirements on the target repre-
sentation. In our sum example, the dots representation fulfils
the requirements of the problem: they can encode integers and
summation. A representational system like the lambda calculus
would also fulfil the requirements, but Venn diagrams would
not. If instead our problem involved trigonometric functions,
our dot and Venn diagram representational systems would
fail to satisfy the requirements, receive a low informational
suitability score, and hence not be recommended.

The ‘requirements’ of a problem are properties, either
present or absent. We take our definition of property from
our previous work [4], where properties are triples of kinds,
values, and attribute sets. The kind is one of five possible
values: tokens (the visible pieces of a representation), types
(the roles that tokens can take in a representation), patterns
(higher level structures that are composed of tokens), laws (facts
in the representation such as associativity), and tactics (ways of
manipulating the representation). Values are the instances of the
kinds that exist within a representational system: for example,
a property might have kind ‘type’ and value ‘number’ in
our algebraic representation in Formula (1). Finally, attributes

describe how the value is used within the representational
system at a more granular level. Common attributes for specific
representation instances are ‘number of occurrences’ or ‘is of
type’ for tokens. We omit the attribute set when empty.

Formally, a correspondence is a triple 〈 p1, p2, s 〉 where
p1 and p2 are propositional formulae of properties and s
is a real value between 0 and 1 [4]. Property formulae
use the connectives AND, OR, and NOT, with the expected
interpretations, allowing many-to-many correspondences. We
expand on property formulae in Appendix B. Value s denotes
the correspondence strength: when s = 0, the content is
unrelated; when s = 1, the content is the same.

If we wanted to encode the correspondence ‘a
∑

is like
stacking either horizontally or vertically’, we first identify the
properties involved. In this case, we have a ‘token’ kind of
property with value

∑
from the algebraic representation, so

p1 = token
∑

(ignoring any attributes for this example), while
we have two ‘pattern’ properties from the dots representation,
p2 = pattern stack-horizontal and p3 = pattern stack-vertical
(where the attributes are similarly ignored). The correspon-
dence would thus be 〈 p1, p2 OR p3, 1.0 〉. Note ‘either’ in our
specification: these target properties are not independent, so
we do not write two correspondences. Instead, we use the OR
connective to make the sufficiency of one property or the other
explicit. This is a strong correspondence, and hence has strength
s = 1.0. We will explore strength further in Section II-C.

Correspondences are a potential source of explanations.
Because we can inspect which correspondences are matched
(i.e., in Equation (2), for which subset of correspondences
C both satp1

(q) and satp2
(r) are true) we can describe

the analogy they form. Similarly to Gentner’s [5] structure-
mapping, correspondences encode how two structures are
analogous; with strength, we can extend structure-mapping
and quantify how good the analogy is. A description of how
and why an analogy was made can be explicated to the student.
Further cognitive grounding discussion is in Appendix C.

B. Property probabilities

If we consider words to be the atomic units of written
English, we can compute an occurrence probability of a word
derived from its frequency in a particular corpus. Similarly for
representational systems, properties are the atomic units; each
has an occurrence probability derived from its frequency in a
corpus. Thus, each property p in a representational system is
associated with a prior probability Pr(p).

In addition to baseline probabilities, we can consider the con-
text in which properties occur. For two analogous problems in
different representational systems, knowledge of the properties
from one representational system will update our knowledge
of the properties present in the other. Returning to our example
of summing integers, observing the

∑
operator in Formula (1)

primes us to expect stacking—whether horizontal or vertical—
in Figure 1a. The conditional probability Pr(p2 | p1) captures
our knowledge about p2 after observing that p1 is present.

When defining the conditional probability, we consider the
co-occurrence of two properties to depend on the source prob-

R(x1, . . . , xn) R(y1, . . . , yn) ∀ki=1 [〈x′
i, y

′
i, si 〉 ∧ (xi → x′

i) ∧ (y′i → yi)]

〈xk+1, yk+1, s′ 〉 · · · 〈xn, yn, s′ 〉
[REL] where s′ =

1

n− 1

k∑
i=1

si (8)

lem and its transformations into alternative representational
systems. As in our dots example, the transformations of a
problem capture the same important concepts, but are not
necessarily isomorphic. Stacking is a transformation of adding;
dots are a transformation of natural numbers.

An extended discussion can be found in Appendix D.1.

C. Strength

Correspondence strength must reflect the analogical simi-
larity of its constituent property formulae. Naively, this is the
conditional probability of the second property formula given
the first, but this is not directly comparable to the prior: Is there
a big difference to the prior probability? How much could the
probabilities be different?

To address these concerns, we define the strength of the
correspondence 〈 p1, p2, s 〉 to be

s =
Pr(p2 | p1)− Pr(p2)

1− Pr(p2)
. (3)

When Pr(p2 | p1) < Pr(p2), we redefine the correspondence
to be between p1 and NOT p2, using Pr(NOT p) = 1− Pr(p):

Pr(NOT p2 | p1)− Pr(NOT p2)

1− Pr(NOT p2)
=

Pr(p2)− Pr(p2 | p1)
Pr(p2)

. (4)

Strength is undefined when Pr(p1) or Pr(p2) are 0 or 1; these
indicate either the property never occurs, or the property carries
no information (in the Information Theory sense).

Informally, Equation (3) states that s is the increase in
probability of observing p2 relative to the maximum potential
increase of observing p2. The numerator is the difference
between the informed and uninformed probability of p2, while
the denominator is the difference between perfect prediction of
p2 and the uninformed probability of p2. Similarly, Equation (4)
informally states the decrease in probability of p2 relative to
the potential decrease of p2; see Appendix D.2 for more details.

Mutual information [6] and Kullback-Leibler (KL) diver-
gence [7] are similar to correspondence strength. Mutual
information is a symmetric measure of how much information
is shared between two distributions; correspondences are not
symmetric, so mutual information is inappropriate for strength.
KL divergence is asymmetric, but not bound to the interval
[0, 1]. Because properties are either present or absent and, so,
behave as Bernoulli random variables, we can normalise the
KL divergence to the interval [0, 1] with information content:
KL(Pr(p1 | p2) || Pr(p1))/ I(p1). But KL divergence forms
a leaky abstraction. As we will see in Section IV, strength
as defined in Equation (3) encapsulates relationships between
property formulae only in terms of prior probabilities and
strength; KL divergence requires calculations on posterior
probabilities that are not necessarily available.

III. DISCOVERING CORRESPONDENCES

We turn to exploring how correspondences are discovered.
Additional points for this discussion are in Appendices D.3–
D.5. Consider the correspondence between 2 and ◦◦: these fill
the same role in their respective representations. Hence,

〈 token 2 : {hasType := number},
token ◦◦ : {hasType := dot-arrangement}, 1.0 〉

For a human this is ‘obvious’, but it must be deduced from
somewhere. We propose four rules to automatically discover
correspondences: identity, reversal, composition, and relation.

The rule of identity states that two properties with the same
kind and same value are perfectly corresponding:

p1 ≡ p2
〈 p1, p2, 1.0 〉

[IDY] (5)

where ≡ is the string match on kinds and values. This rule
implies that correspondences are reflexive with strength 1.0,
and allows naturally overlapping representations (e.g., using
Hindu-Arabic numerals) to map cleanly into one another.

Correspondence-based rules build new correspondences from
existing ones. The first is the rule of reversal:

〈 p1, p2, s 〉
〈 p2, p1, s′ 〉

[REV] where s′ = s · Pr(p1)(1− Pr(p2))

Pr(p2)(1− Pr(p1))
. (6)

This allows us to ‘walk backwards’ along a correspondence.
The second is the rule of composition:

〈 p1, p2, s 〉 p2 → p3 〈 p3, p4, s′ 〉
〈 p1, p4, s · s′ 〉

[CMP] (7)

allowing us to chain together correspondences. Typically we
assume p2 ≡ p3, but using p2 → p3 generalises this rule
to property formulae. The strength for each rule is derived
from the definition of correspondence strength in Equation (3),
treating properties as Bernoulli random variables, and the
assumption that properties are conditionally independent of
each other. That is, p1 and p4 are not independent, but we
assume they are independent given p2.

Finally, the relation rule [REL] exploits the internal structure
of each representation to suggest new ‘parallel’ correspon-
dences. Properties can be linked by the relation ‘p1 has attribute
with entry p2’. More generally, let R(p1, . . . , pn) be an n-
ary relation on properties. Relation R defines a context with
some properties are already in correspondence: the remaining
properties may also be in correspondence. This is the rule of
relations, Equation (8). Assume, without loss of generality, that
the properties already in correspondence are the first k pairs. At
least one pair of properties is already in correspondence, and
at least one pair is a potential correspondence: thus 1 ≤ k < n.
If k is high—many property pairs already correspond—we
can be more confident that the remaining n− k property pairs
correspond. Hence their strength s′ will be high. But if k

TABLE I: Properties of the algebraic and dots representations.

Algebraic type number, token 1 : {hasType := number}

Dots type dot-arrangement, token ◦ : {hasType := dot-arrangement}

is low—few property pairs already correspond—we cannot
be so confident that the remaining property pairs correspond.
Hence their strength s′ will be low. In the case where n = 2
and k = 1, we have s′ = s, and so a useful simplification
occurs: if two properties have the corresponding attributes, then
the properties themselves may correspond; conversely, if two
properties correspond, the values of their attributes may also
correspond. We call these [VAL] and [ATR], respectively.

Let us explore these rules using our example of algebra and
dots using the properties present in Table I. Because these two
representations are disjoint—no properties share a kind and
value—the rule of identity [IDY] cannot be used. A human
analyst must identify a simple initial correspondence:

〈 token 1 : {hasType := number},
token ◦ : {hasType := dot-arrangement}, 1.0 〉

This states that 1 corresponds perfectly to ◦. We can now apply
[REV] to associate ◦ with 1:

〈 token 1 : {hasType := number},
token ◦ : {hasType := dot-arrangement}, 1.0 〉
〈 token ◦ : {hasType := dot-arrangement},

token 1 : {hasType := number}, 0.9 〉

[REV]

Notice the strength reduced slightly: this is because a 1 has a
higher prior probability than a single ◦: all dot arrangements
are numbers, but not all numbers are dot arrangements.

Using the correspondence between 1 and ◦, we can discover
correspondences between their attributes. Applying the rule of
attributes, we have a correspondence between numbers and dot
arrangements (eliding the attribute assertions):

〈 token 1 : {hasType := number},
token ◦ : {hasType := dot-arrangement}, 1.0 〉
〈 type number, type dot-arrangement, 1.0 〉

[ATR].

Applying rules in this way discovers new possible corre-
spondences. A richer set of properties would allow for more
rule applications and more discoveries, but even over small
domains this support is valuable. Analysts find filtering corre-
spondence suggestions easier than inventing correspondences
themselves [8]: with tooling support based on these rules, large
domains can viably be linked with correspondences, opening
up future applications for this framework.

IV. CORRESPONDENCES AS EXPLANATIONS

Understanding both the definition and source of corre-
spondences, we can interpret their function in making a
recommendation. Correspondences provide two modes of ex-
planation: descriptive explanation, and constructive explanation.
A descriptive explanation is useful when two structures are
suspected to be analogous; for example, our statements about
summing numbers in Formula (1) and arranging dots in

Figure 1a. How they are analogous might be unclear, but the
correspondences that link them form an explanation. Consider
our correspondence 〈 token 1, token ◦, 1.0 〉 linking 1 and ◦
(ignoring attributes). Or consider the more sophisticated cor-
respondence earlier linking the

∑
operator with stacking. By

informing the user that these are the strongest correspondences
which are matched in both the source and target statements
(perhaps with generated text) we can explain the analogy.

Conversely we can consider constructive explanations. If a
target structure is not known, we can use correspondences to
describe what properties the analogous statement should have.
Consider again Formula (1), our algebraic problem statement,
but this time without knowing the equivalent statement in
dots. Using the same correspondences from our descriptive
explanation, we can suggest to a student that this problem
might be solved by representing 1 as ◦, and to use either
vertical or horizontal stacking to convey the

∑
. Such hints

could support progress through the problem, and potentially
reveal deep insights into numbers and summation.

Appendix E describes two evaluations of correspondences.
Appendix F exemplifies correspondences in a new domain.

V. SUMMARY AND CONCLUSIONS

Re-representing a problem is a burden on the solver, par-
ticularly learners, yet is often key to reaching a solution. We
have described correspondences, which capture links between
representational systems, to automatically analyse a problem
and suggest alternative representations. We explored how
correspondences describe or form analogies: numbers can be
represented by dots, and addition by stacking. Through cor-
respondences we enable reactive, contextual, and explainable
interactions between people and software.

The current automatically discovered correspondences are
overly general; we will consider how domain-specific heuristics
can be integrated in a principled way. We plan to explore
alternatives to the objective function given in Equation (2). We
will explore how programmers choose programming languages;
this framework would allow programmers to evaluate languages
specifically for their current problem. We plan to run user
studies to empirically evaluate our formulation.

We propose discovering correspondences in an interactive
process, with an analyst acting as arbiter: what is valid in
one instance is invalid in the next, even between the same
representations. This freedom makes correspondences useful:
analogies can be imperfect, but they still guide our reasoning
in surprising and insightful ways.

An implementation of the work described in this paper
is available at https://github.com/rep2rep/robin. This paper,
without appendices, is available at https://dx.doi.org/10.1109/
VL/HCC50065.2020.9127258

ACKNOWLEDGEMENTS

Aaron Stockdill is supported by the Hamilton Cambridge
International PhD Scholarship. This work was supported by the
EPSRC Grants EP/R030650/1, EP/R030642/1, EP/T019034/1,
and EP/T019603/1. The authors wish to thank the reviewers
and Gem Stapleton for their comments.

https://github.com/rep2rep/robin
https://dx.doi.org/10.1109/VL/HCC50065.2020.9127258
https://dx.doi.org/10.1109/VL/HCC50065.2020.9127258

REFERENCES

[1] J. D. Moore, “What makes human explanations effective?” in Proceedings
of the 15th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ, USA: Lawrence Elbaum Associates, 1993, pp. 131–136.

[2] I. Vessey, “Cognitive fit: A theory-based analysis of the graphs versus
tables literature,” Decision Sciences, vol. 22, no. 2, pp. 219–240, 1991.

[3] D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Transactions
on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[4] D. Raggi, A. Stockdill, M. Jamnik, G. Garcia Garcia, H. E. A. Sutherland,
and P. C.-H. Cheng, “Inspection and selection of representations,” in
Intelligent Computer Mathematics, C. Kaliszyk, E. Brady, A. Kohlhase,
and C. Sacerdoti Coen, Eds. Springer, 2019, pp. 227–242.

[5] D. Gentner, “Structure-mapping: A theoretical framework for analogy,”
Cognitive Science, vol. 7, no. 2, pp. 155–170, 1983.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2005.

[7] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[8] R. D. Freund, J. John W. Brelsford, and R. C. Atkinson, “Recognition
vs. recall: Storage or retrieval differences?” Quarterly Journal of
Experimental Psychology, vol. 21, no. 3, pp. 214–224, 1969.

[9] S. Ainsworth, The Educational Value of Multiple-representations when
Learning Complex Scientific Concepts. Springer, 2008, ch. 9, pp. 191–
208.

[10] A. Shimojima, “Logical constraints in diagrammatic reasoning,” in
Logical Reasoning with Diagrams, G. Allwein and J. Barwise, Eds.
New York, NY, USA: Oxford University Press, 1996, ch. 2, pp. 27–48.

[11] G. Stapleton, M. Jamnik, and A. Shimojima, “What makes an effective
representation of information: A formal account of observational advan-
tages,” Journal of Logic, Language and Information, vol. 26, no. 2, pp.
143–177, June 2017.

[12] A. Shimojima and D. Barker-Plummer, “Operations on single feature
indicator systems,” in Diagrammatic Representation and Inference,
P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz, and F. Bellucci,
Eds. Springer, 2018, pp. 296–312.

[13] K. Stenning and O. Lemon, “Aligning logical and psychological perspec-
tives on diagrammatic reasoning,” Artificial Intelligence Review, vol. 15,
no. 1, pp. 29–62, March 2001.

[14] B. Falkenhainer, K. D. Forbus, and D. Gentner, “The structure-mapping
engine: Algorithm and examples,” Artificial Intelligence, vol. 41, no. 1,
pp. 1–63, 1989.

[15] D. Raggi, A. Bundy, G. Grov, and A. Pease, “Automating change of
representation for proofs in discrete mathematics (extended version),”
Mathematics in Computer Science, vol. 10, no. 4, pp. 429–457, 2016.

[16] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, ser. CSCW ’00. New York,
NY, USA: ACM, 2000, p. 241–250.

[17] G. Minnameier, “The logicality of abduction, deduction, and induction,”
in Ideas in action: Proceedings of the applying Peirce conference. Nordic
Pragmatism Network Helsinki, 2010, pp. 239–251.

[18] L. Damas and R. Milner, “Principal type-schemes for functional pro-
grams,” in Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’82. New York,
NY, USA: ACM, 1982, pp. 207–212.

APPENDIX

A. Related work

Diverse representations benefit education. Ainsworth dis-
cussed the value of multiple representations when they are
presented together, and thus can be compared and contrasted
by the learner [9]. One benefit of having access to several
different encodings is gaining deeper understanding in how
representations relate to each other. Ainsworth also acknowl-
edged the importance—and difficulty—of being able to select
a representation.

To choose appropriate representations, we must be able
to compare representations. The diversity of representations
makes them difficult to describe: a representation relates to
the domain it is describing, but the mapping can be complex.
The specific strengths of diagrammatic representations were
described by Shimojima as free rides [10], and then generalised
by Stapleton et al. as observational advantages [11]: represen-
tations change the nature of accessing information, and can pro-
vide seemingly direct access to the underlying domain objects.
Recent work by Shimojima formalises the mapping between a
representation and the domain it represents [12], specifically fo-
cusing on single indicator feature systems (representations with
bijective mappings to their domains). This semantic approach
contrasts with work from Stenning et al., who observed the
characteristically diagrammatic aspects of representations [13];
the syntax defines the interface we use for reasoning. Moody’s
‘physics of notations’ [3] also examined the visual aspects of
representations, aiming to identify desirable aspects. These
physical features directly influence our ability to understand
and work with representations. We consider representations
broadly, including sentential and diagrammatic ones, formalised
ones and even representations that do not have a known
formalisation.

Gentner considered representations from the perspective of
analogy, and concluded that representations are well-considered
through their internal structure [5]. Her work on structure-
mapping constructs links between two analogous concepts by
unifying their internal associations [14]. This requires well-
defined internal structure—a requirement the correspondences
framework shares. But structure-mapping assumes that two
concepts are known to be related, we just need to work out
how they are related. When we are searching for an analogy,
we do not know this. Thus, the purpose of our work is to
discover related concepts through analogy.

B. Property formulae

When introducing correspondences, we mentioned property
formulae. These formulae consist of properties combined with
the connectives AND, OR, and NOT. We now spend some
time understanding the motivation of these formulae, and the
meaning we ascribe to them.

Correspondences are, in the simplest case, a one-to-one
relation. One property in the first representation relates to
one property in the second representation. For example, a dot
corresponds to a number. While tidy and simple, this is also

rare. A representation might need to compose several tokens
and patterns to capture what is a single token in another. Or a
representation might have redundancy, where there are several
properties that can all do the same thing. For example, adding
numbers corresponds to stacking dots, but this can be either a
vertical stack or a horizontal stack.

To allow for these more complex relations, we introduce
combinations of properties: the connectives AND and OR,
meaning that both properties must be present, or at least one
of the properties must be present, respectively. We note a
semantic quirk: OR is similar, but different, to having two
correspondences. Consider our stacking example again: we
write

〈 token+,
pattern stack-horizontal OR pattern stack-vertical, 1.0 〉

whereas we could use two correspondences

〈 token+, pattern stack-horizontal, 1.0 〉
and 〈 token+, pattern stack-vertical, 1.0 〉.

The two individual correspondences state that + is like stacking
horizontally, and that + is like stacking horizontally. If a
representation has only one kind of stacking then that is
acceptable, but if it has both then that is better—twice as
good, in fact. In contrast, the combined correspondence using
OR states that having one kind of stacking is acceptable, as is
having both, but it is not better to have both than just one or
the other.

This difference in semantics does not apply to AND, as
there is no way to re-encode AND as a combination of
correspondences.

The final connective NOT describes inverse relationships;
that is, observing a property in the first representation makes
it less likely we will observe a property in the second relation.
That is, they conflict. We see this used most often in two ways:
either to express a direct negative correspondence (as in the
case of Equation (4)) or to preclude conflicting properties: if I
have x but not y, then that corresponds to z.

Notice that our combining logical formulae with probabilistic
measures in correspondences provides benefits over each
approach individually. Logically defined analogies require for-
malisations and guarantees about their domains. This restricts
them to well-defined systems and prohibits ‘good enough’
analogies which can enlighten without being totally formalised
or correct [15]. Purely statistical analogy mechanisms allow
for these fuzzy analogies, but sacrifice explainability. Without
any internal structure, the analogy suggestions are opaque to
the user: there is no justification or support on why this is
an analogy [16]. Our formalisation of correspondences allows
for considering informal representations and fuzzy analogies
between them as well as explaining the analogy.

C. Cognitive foundations

Human reasoning takes many forms, but broadly we can de-
scribe reasoning as deductive, inductive, or abductive [17]. The
simplest to automate—captured by the identity, reversal, and

transitivity rules—is deductive reasoning. Through operations
on existing correspondences we can deduce new correspon-
dences. Thus, correspondences form a sort of calculus.

While the rules of identity, reversal, and transitivity are
motivated by deductive reasoning, relation correspondence rule
is motivated by inductive reasoning. Specifically, we assume a
meaningful structure must be preserved, and this structure is
exposed through relationships. By observing these relationships,
we can infer new correspondences.

Foundational work by Gentner explored how analogical
power is proportional to the relations preserved, in contrast to
the superficial features preserved [5]. Indeed, Gentner defines
an analogy to be ‘a comparison in which relational predicates,
but few or no object attributes,1 can be mapped from base to
target’ [5]. Our rules address this with the ‘hasType’ attribute:
through the types of patterns or relation-tokens, we can extract
these relation mappings. We use a Hindley-Milner–style type
system [18], to accommodate higher-order relations.

Beyond typing relations, our rep2rep framework allows for
other attributes which can impose novel types of structure on
the domain. These attributes extend the set of relations available
to create correspondences, fully realising the potential of the
structure-mapping concept. All of the contributions in this
paper naturally scale over these attributes.

Further extending Gentner’s structure-mapping framework,
we remove the need for an explicit target structure to form an
analogy with. We work between representational systems, such
that any source structure in a known representation can be
used to construct an analogy in another known representation.

D. Deriving strengths

The definition of correspondence strength gives us an object
to manipulate mathematically. We take full advantage of this,
and in this section there are five calculations we wish to inspect
in detail: the conditional probability of properties, strength
between conflicting property formulae, the strength of reversed
correspondences, the strength of composed correspondences,
and the strength of correspondences induced by [REL].

1) Conditional property probabilities: Conditional probabil-
ity is defined as

Pr(X | Y) =
Pr(X ∩ Y)

Pr(Y)
.

We define Pr(p2 | p1) in the same way, adapted to our domain
and corpus. In representation A we can encode problems ai.
Each can be transformed into analogous problems TB(ai)
in representation B. Note that TB(ai) is a set; multiple
transformations might be appropriate. Using the count operator
|·|, and satp(q) as a predicate on whether the property formula
p is satisfied by the properties in question q, we have

Pr(p2 | p1) =
∑

i|{bj ∈ TB(ai) | satp1
(ai) ∧ satp2

(bj)}|∑
i|{bj ∈ TB(ai) | satp1

(ai)}|
.

1Attribute here is used in the manner of Gentner [5]; this is not an attribute
as we define it. In this paper, we use the word ‘feature’ with similar meaning.

The transformation set TB(ai) is more general than a set of
formal translations. As in our dots representation example, the
problems in the transformation set capture the same important
concepts, and include problems not provably equivalent. We
consider the transformation appropriate if a human expert
would be able to reach the same solution as under the original
problem statement.

2) Conflicting properties: Strength is defined to be between
0 and 1, but the formula in Equation (3) becomes negative
when Pr(p2 | p1) < Pr(p2). To account for this, we redefine the
correspondence to be between p1 and NOT p2, that is observing
p1 informs us about not observing p2. The strength is now
calculated as

s =
Pr(NOT p2 | p1)− Pr(p2)

1− Pr(NOT p2)

which, after applying the probability identity Pr(NOT a | b) =
1− Pr(a | b) yields

s =
Pr(p2)− Pr(p2 | p1)

Pr(p2)− 0
.

The derived formula has an interpretation that is consistent
with the regular strength interpretation. We can read this as: the
strength of the correspondence is the change in likelihood of p2
after observing p1 relative to the amount it could potentially
have decreased (our leaving − 0 in the denominator is to
remind the reader of the lowest possible probability).

3) Reversed correspondences: The rule [REV] transforms
the correspondence 〈 p1, p2, s 〉 into 〈 p2, p1, s′ 〉 where s does
not necessarily equal s′. By Equation 3, we have

s′ =
Pr(p1 | p2)− Pr(p1)

1− Pr(p1)
.

Further, by Bayes’ Theorem, we have

Pr(p1 | p2) = Pr(p2 | p1) ·
Pr(p1)

Pr(p2)
.

Thus we can rewrite s′ in terms of only s, Pr(p1), and Pr(p2).

s′ =
Pr(p1 | p2)− Pr(p1)

1− Pr(p1)

=
Pr(p2 | p1) · Pr(p1)/Pr(p2)− Pr(p1)

1− Pr(p1)

=
Pr(p2 | p1)− Pr(p2)

Pr(p2)
· Pr(p1)

1− Pr(p1)

=
Pr(p2 | p1)− Pr(p2)

1− Pr(p2)
· 1− Pr(p2)

Pr(p2)
· Pr(p1)

1− Pr(p1)

= s · 1− Pr(p2)

Pr(p2)
· Pr(p1)

1− Pr(p1)

But why is this useful? We ensure we have a clean
abstraction: we do not need to know Pr(p1 | p2), or even
know that correspondence is defined in terms of conditional
probability. Knowing only the correspondence strength and the
prior probabilities of p1 and p2 is sufficient to calculate the
reversed correspondence strength.

A further algebraic manipulation reveals that

s · Pr(p1) · (1− Pr(p2)) = s′ · Pr(p2) · (1− Pr(p1)).

Multiplying by the probability of the ‘starting’ property and the
complimentary probability of the ‘ending’ property equalises
the strengths. In fact, this is equal to

Pr(p1 ∩ p2)− Pr(p1) · Pr(p2),

the difference between the true conjunctive probability of the
properties, and the ‘naive’ conjunction of the properties if they
were independent.

4) Composed correspondences: The greatest strength of our
definition of strength is when we are composing correspon-
dences with [CMP]. Given 〈 p1, p2, s 〉 and 〈 p2, p3, s′ 〉, we
can derive 〈 p1, p3, s · s′ 〉; that is, strengths multiply during
composition. The proof is long and uninteresting, but does rely
on the conditional independence of p1 and p3 given p2; that
is,

Pr(p1 ∩ p3 | p2) = Pr(p1 | p2) · Pr(p3 | p3).

As with reversal, this allows for clean abstraction. The
definition of correspondence strength is concealed: if you are
composing correspondences you simply multiply the strength.
It also gives us an interesting insight into correspondences:
by assuming conditional independence, the correspondence
will get weaker as we extend the chain. This is sensible: the
more we extrapolate, the weaker our confidence becomes. The
‘true’ strength of the correspondence between p1 and p3 can be
derived from a data set in the same way the first correspondence
strengths are, but as a first approximation the multiplication is
suitable.

5) Relation correspondences: The final strength formula
is that associated with the [REL] rule in Equation (8). The
strength s′ of all the derived correspondences based on an
n-ary relation with k already-corresponding arguments is

s′ =
1

n− 1

k∑
i=1

si

As we explain in Section III, the motivation for this definition
is how confident we are: if most of the n arguments already
correspond, the remaining n− k arguments are more likely to
correspond, so the strength is higher. Conversely, when few
of the n arguments already correspond, the remaining n− k
arguments are less likely to correspond, so the strength is lower.

This calculation is a heuristic, and is not based on any
fundamental properties of correspondences. Domain-specific
knowledge about the nature of the relation R would allow us
to more precisely set s′.

E. Feasibility assessment

Having thoroughly explored correspondences in isolation,
we return to the motivating goal: how can we suggest an ap-
propriate representation for a specific problem? By describing
representations as in [4], we can apply Equation (2) over a set
C of correspondences that are both manually and automatically

TABLE II: Ratings for representations, as assigned by human
experts and the recommendation algorithm. Alg-X is the
algorithm with X disabled: I for importance, S for strength, IS
for both. Magnitudes between columns are incomparable.

Representation Experts Algorithm Alg-I Alg-S Alg-IS

Bayesian 6.0 17.4 31.0 17.4 31.0
Areas 4.8 11.4 21.7 12.3 23.0
Contingency 4.9 8.4 18.5 9.1 20.0
NatLang 3.5 6.9 16.0 10.4 20.0

derived between the representations, and thus assess how
sensible our automatic analogies are.

We presented 11 experts2 with the following problem
statement:

Problem 1% of the population has disease D. A
test is reliable 98% if you have the disease and
97% if you do not have the disease. Assuming the
test comes out positive, what is the probability of
having the disease?

This problem is stated in a Natural Language representational
system, but is amenable to many alternative representations.
Along with the problem description, we provided short descrip-
tions of five representational systems:

Natural Language English language consisting of words,
punctuation, etc., grouped into sen-
tences and paragraphs;

Bayesian Algebra Formal algebraic manipulation, notably
including the function Pr(· | ·);

Contingency Tables Two-dimensional tables filled with nu-
meric values, with rules governing the
sums of rows and columns;

Rectangular Areas A unit square which can be partitioned
using horizontal and vertical lines; and

Euler Diagrams Overlapping circles representing sets
and their relations, notably unable to
represent size.

We discard the Euler representation from our results, as through
feedback we discovered that participants implicitly ‘upgraded’
the representation by adding the assumption that the size of
the regions indicated cardinality.

Participants used a 7-point Likert scale to rate the degree to
which each representation is sufficient for solving the problem.
The mean rating of each representation is shown in Table II.
Simultaneously, using our framework, we evaluated the infor-
mational suitability of each representation. The informational
suitability score from Equation (2) for each representation is
also shown in Table II. The one-tailed Pearson’s correlation
between the two ratings is r = 0.89 (p = 0.053). We conclude
that the algorithm does agree with expert opinion on the
informational suitability of representations.

2In screening participants, we defined an ‘expert’ as someone who uses
maths skills in day-to-day work such as Lecturers, Professors, Research
staff and PhD students in Engineering, Informatics, and Computer Science
departments.

type title type character type actor
token Blade Runner : {isThe = title}

token Harrison Ford : {isThe = actor}
token Rick Deckard {isThe = character,

playedBy = Harrison Ford}

Fig. 2: Example properties for a Films category.

To understand how the different facets of the algorithm
influence the result, we performed an ablation study over
the two factors of Equation 2: property importance and
correspondence strength. The ratings for the algorithm without
these two factors are also included in Table II; Alg-I is the
algorithm without importance measure, that is, the importance
factor is switched off (r = 0.91, p = 0.047), Alg-S is the
algorithm without strength, (r = 0.74, p = 0.130), and Alg-
IS is the algorithm with neither (r = 0.83, p = 0.086). We
can conclude that strength has more influence on the result
than importance, but the score is largely driven by the count
of correspondences: even with both disabled, the algorithm
performs moderately well.

F. Generalising correspondences to other domains

Correspondences and the rules to discover them were
developed in the context of mathematical problem solving,
representation recommendation, and kind-value-attribute prop-
erty triples, but the ideas are more general. Consider again the
rule of relations, [REL], a generalisation of the attribute and
value rules. There is no reference to kinds, values, or attributes;
[REL] requires only sets of objects and relations on them.
Similarly, [REV] and [CMP] work over any sets of objects—no
properties required. When we abstract the equivalence relation
from the rule of identity [IDY] to work on abstract objects
rather than properties, the correspondence framework becomes
fully generalised. Correspondences can thus be used to find
analogies between any sets of objects equipped with relations.

To demonstrate this generalisation, we consider the problem
of discovering analogous entertainment across media rather

type title type character type writer
token The Caves of Steel : {isThe = title}

token Isaac Asimov : {isThe = writer}
token Elijah Baley : {isThe = character}

Fig. 3: Example properties for a Books category.

than mathematical problem statements. Our sets of objects
are no longer representations, but product categories: books
and films, for example. We use the rep2rep property structure
to manage the object encoding, so our objects remain kind-
value-attributes, but in principle this is not required. Our kinds
are limited to types and tokens, but the values are a diverse
collection of names, both peoples’ and titles. We keep our
relations as attributes, and thus can continue to use [ATR] and
[VAL], but use new labels such as ‘isThe’, or ‘playedBy’. The
equivalence relation ≡ remains string equality on kinds and
values. We give some sample properties in Figures 2 and 3.

In our simple example, we can apply the rule of identity
to types title and character, because both categories share
these two properties. From this we can apply the rule of value
using the ‘isThe’ attribute and character correspondence, thus
deducing that Rick Deckard corresponds to Elijah Baley. The
derivation is:

Let p1 = token Rick Deckard {isThe = character,
playedBy = Harrison Ford}

and p2 = token Elijah Baley : {isThe = character} in

〈 type character, type character, 1.0 〉
p1 {isThe = character} p2 {isThe = character}

〈 p1, p2, 1.0 〉
[VAL]

Over such constrained property sets this is trivial: an analogy
was found between domains of books and films. However, it
exemplifies the generality and application of our framework
in a new domain.

	Introduction
	Formalising correspondences
	Transformations
	Property probabilities
	Strength

	Discovering correspondences
	Correspondences as explanations
	Summary and conclusions
	References
	Appendix
	Related work
	Property formulae
	Cognitive foundations
	Deriving strengths
	Conditional property probabilities
	Conflicting properties
	Reversed correspondences
	Composed correspondences
	Relation correspondences

	Feasibility assessment
	Generalising correspondences to other domains

